1024亚洲精品国产片_成人特黄a级毛片免费视频_欧美日韩国内另类综合在线_热播国产无码久久精品一级五月天不卡_日韩在线视频观看免费网站_波多野结衣AV网站_浓毛老太交欧美老妇热爱乱_嘿嘿视频app污免费下载观看_国产麻豆精品制服丝袜_最近中文字幕2018中文字幕

Expert forum

首頁 專家論壇 標(biāo)本專家[文獻(xiàn)精讀] 液體活檢的發(fā)祥地和試驗(yàn)田
注冊

[文獻(xiàn)精讀] 液體活檢的發(fā)祥地和試驗(yàn)田

2017-08-28 00:00來源:原版作者:Jerry Li

從最初人們發(fā)現(xiàn)游離的腫瘤DNA, 到2010年后臨床概念的建立和檢測技術(shù)的成熟,液體活檢的發(fā)展實(shí)際上經(jīng)過了很漫長的過程。 液體活檢的發(fā)展在很大程度上得益于無創(chuàng)產(chǎn)檢領(lǐng)域的發(fā)展。 無創(chuàng)產(chǎn)檢(NIPT)由于其在理論和實(shí)踐上都和腫瘤的液體活檢很相似,被認(rèn)為是液體活檢的一個(gè)分支。 從無創(chuàng)產(chǎn)檢在90年代末建立的那一刻開始, 就成為了液體活檢的發(fā)祥地和試驗(yàn)田。

我們在上一期的《液體活檢通訊》中討論了用來研究和鑒定游離DNA的身份的兩個(gè)重要的模型系統(tǒng), 即凝血系統(tǒng)和創(chuàng)傷系統(tǒng)。 這兩個(gè)系統(tǒng)都是訊速變化的血液環(huán)境, 在這樣的環(huán)境里的游離DNA的消長情況不僅提供了游離DNA的生物學(xué)指標(biāo), 更為診斷患者的生理病理情況,比如創(chuàng)傷患者的預(yù)后, 提供了有力的依據(jù)。  這兩個(gè)系統(tǒng)都是同源系統(tǒng),即增生的游離DNA和本底的游離DNA來自同一供體。

實(shí)際上,從科學(xué)發(fā)現(xiàn)的角度看,同源系統(tǒng)對(duì)于液體活檢的科研來說是有很大難度的, 因?yàn)橥聪到y(tǒng)中增生和變化的DNA是很難追溯的。 相形之下, 異源系統(tǒng)中追溯DNA要容易得多。 最經(jīng)典的異源系統(tǒng)就是母體和嬰兒, 無創(chuàng)產(chǎn)檢就是用母體血樣來鑒定嬰兒基因。 在這個(gè)系統(tǒng)中,異源的游離DNA在高分辨率的分子診斷方法學(xué)下,可以清晰地判斷出來。



無創(chuàng)產(chǎn)檢后來居上,引領(lǐng)液體活檢

液體活檢的主流市場和終極目標(biāo),是通過游離DNA和游離細(xì)胞來完成對(duì)腫瘤的檢測。 在1996年發(fā)表在《自然醫(yī)學(xué)》的兩篇文章里, 美國和瑞士的兩個(gè)項(xiàng)目組分別獨(dú)立地構(gòu)建了檢測患者血液中的游離的腫瘤DNA的方法【1,2】。 其中的美國約翰霍普金斯大學(xué)的Sidransky項(xiàng)目組,他們研究了21頭頸癌患者的血清, 發(fā)現(xiàn)了其中6位患者有衛(wèi)星DNA的突變, 這些突變和實(shí)體瘤的癌突變是一致的,而這6位患者都發(fā)生了癌癥轉(zhuǎn)移。

幾乎在與此同時(shí),瑞士的植物生化和生理實(shí)驗(yàn)室的Anker項(xiàng)目組,用肺癌患者的血漿為樣本,發(fā)現(xiàn)了在大于70%的樣本里可以檢測到載有腫瘤突變的游離DNA。 這兩篇文章為建立當(dāng)代液體活檢的方法學(xué)的提供了理論依據(jù)。從最初發(fā)現(xiàn)游離的腫瘤DNA3】到這時(shí)建立了初步的方法學(xué),20年已經(jīng)過去了, 腫瘤的液體活檢終于有了顯著的進(jìn)步,但是在展望的同時(shí)仍然有很多疑慮【4,5】。

1996年《自然醫(yī)學(xué)》的這兩篇關(guān)于游離腫瘤DNA文章發(fā)表后,啟發(fā)了香港中文大學(xué)的盧煜明教授。 盧教授當(dāng)時(shí)剛剛建立了自己的獨(dú)立課題組,他抓住了這個(gè)機(jī)會(huì),從而開啟了無創(chuàng)產(chǎn)檢的系統(tǒng)【6-8】。盧教授的邏輯也很明確, 嬰兒比腫瘤大多了,既然腫瘤的游離DNA可以檢測到,嬰兒的DNA就更能檢測到。

無創(chuàng)產(chǎn)檢領(lǐng)域的開創(chuàng)性文獻(xiàn),是盧煜明于1997年在《柳葉刀》上發(fā)表的論文,闡述了在母體的血清和血漿中發(fā)現(xiàn)了嬰兒DNA9】。 這篇文章里他研究了30位懷有男嬰的孕婦, 用PCR擴(kuò)增和檢測DNA, 發(fā)現(xiàn)其中的21位(70%)在她們的血樣里有Y染色體的DNA。 因?yàn)?/span>Y染色體是男性特征,只能來源于男嬰, 而在非懷孕婦女以及懷有女嬰的對(duì)照組樣品里沒有發(fā)現(xiàn)Y染色體DNA, 所以結(jié)論是母體血樣中有游離的嬰兒DNA, 這為無創(chuàng)產(chǎn)檢提供了理論依據(jù)。 這篇論文充分發(fā)揮了異源DNA系統(tǒng)的優(yōu)勢,大繁至簡, 用母體環(huán)境對(duì)照Y染色體這個(gè)直觀明了的追蹤系統(tǒng), 迅速找到了目標(biāo)DNA

無創(chuàng)產(chǎn)檢的系統(tǒng)和方法

無創(chuàng)產(chǎn)檢的主要臨床目標(biāo),是通過母體血清中的游離的嬰兒DNA來檢測是嬰兒的染色體異?!?/span>10-14】。 其中最常見的是對(duì)唐氏綜合征的無創(chuàng)檢測【15-20】。 唐氏綜合征(Down syndrome)又被稱為21三體綜合征(trisomy 21), 是最常見的嚴(yán)重出生缺陷病, 在美國有35萬唐氏綜合征的病人,而在全球范圍內(nèi)的唐氏的發(fā)病率和癥狀也都很相似。除了唐氏綜合征,還有其他的染色體異常, 包括13三體綜合征(trisomy 13, 又稱Patau Syndrome), 18三體綜合征(trisomy 18, 又稱Edward Syndrome),特納綜合征 (Turner Syndrome, 又稱45,X)和較為罕見的全套染色體三體綜合征(Triploidy)。

對(duì)于這些染色體遺傳病的無創(chuàng)檢測, 已經(jīng)有了相當(dāng)?shù)呐R床病例積累【21-30】。 無創(chuàng)產(chǎn)檢的檢測方法主要是PCR和測序,包括大規(guī)模平行測序等二代測序方法【6-8, 31-33】。 從現(xiàn)有文獻(xiàn)提供的數(shù)據(jù)看, 無創(chuàng)產(chǎn)檢的系統(tǒng)和傳統(tǒng)方法相比, 除了風(fēng)險(xiǎn)的降低, 它的檢出率(DR, detection rate)和假陽性率(FPR, false positive rate)也明顯優(yōu)于傳統(tǒng)方法。 至此,無創(chuàng)產(chǎn)檢在安全性、靈敏度、特異性上全方位超越了傳統(tǒng)方法,已經(jīng)進(jìn)入了臨床診療指南【34-35】,成為主流的檢測方法。基于無創(chuàng)產(chǎn)檢的檢測產(chǎn)品, 也陸續(xù)在法規(guī)上得到獲得批準(zhǔn)。

除了對(duì)染色體異常的檢測, 無創(chuàng)產(chǎn)檢的還提供了更前沿的產(chǎn)檢項(xiàng)目, 包括全基因組分析、全轉(zhuǎn)錄組分析、全甲基化組分析、組織來源分析等【36-39】。 這些前沿的雖然還是停留在研發(fā)階段, 沒有進(jìn)入法規(guī), 但也引領(lǐng)了未來的無創(chuàng)產(chǎn)檢以致整個(gè)液體活檢的方向。

產(chǎn)檢是有標(biāo)準(zhǔn)答案的平臺(tái)

無創(chuàng)產(chǎn)檢為開發(fā)液體活檢的方法和產(chǎn)品,提供了一個(gè)完美的平臺(tái)。 這個(gè)平臺(tái)的最大的優(yōu)勢,在于這個(gè)平臺(tái)能夠提供標(biāo)準(zhǔn)答案。

在無創(chuàng)方法之前, 產(chǎn)檢是通過羊水穿刺或絨毛檢查來完成, 用這些傳統(tǒng)方法來檢測染色體異常,是有完整的方法學(xué)和大量的臨床積累的【40-46】。 這些傳統(tǒng)方法為無創(chuàng)方法提供了參照系,提供了標(biāo)準(zhǔn)答案。 產(chǎn)檢的標(biāo)準(zhǔn)答案是體現(xiàn)在這個(gè)幾個(gè)方面。

第一,明確的時(shí)間表;

第二,清楚定義的檢測目標(biāo);

第三,異源系統(tǒng)。

無論是第一孕期還是第二孕期, 染色體異常的出現(xiàn)時(shí)機(jī)、概率、位點(diǎn)、游離DNA水平等, 都有明確的期待范圍【47-54】。 所以任何新的產(chǎn)檢方法, 包括已經(jīng)開發(fā)的無創(chuàng)檢測,還有未來的產(chǎn)檢方法, 只要和現(xiàn)有方法比對(duì), 就可以計(jì)算出檢出率和假陽性率,相對(duì)準(zhǔn)確地對(duì)新方法的優(yōu)劣做出鑒別。 相當(dāng)來說,腫瘤的出現(xiàn)或者復(fù)發(fā),沒有明確的時(shí)間表, 突變位點(diǎn)眾多, 它是沒有標(biāo)準(zhǔn)答案的, 如果要計(jì)算出檢出率等參數(shù),其過程也更為復(fù)雜,這樣開發(fā)新檢測方法的成本和時(shí)間要求就更高。 作為異源系統(tǒng), 產(chǎn)檢提供了明確而簡便的異源系統(tǒng), 每一份嬰兒的DNA都有特征DNA(比如Y染色體DNA), 而腫瘤的高度異質(zhì)性和突變率決定了它作為異源系統(tǒng),是非常復(fù)雜的。 可以這樣認(rèn)為,如果沒有無創(chuàng)產(chǎn)檢在近年的技術(shù)推動(dòng), 液體活檢領(lǐng)域到現(xiàn)在還只能是在黑暗中充滿希望地摸索著。

綜合地看, 無創(chuàng)產(chǎn)檢作為液體活檢的先行領(lǐng)域,開創(chuàng)了重要的概念和方法學(xué), 對(duì)液體活檢的整個(gè)領(lǐng)域做出了非常積極的推動(dòng)作用。 從市場規(guī)模和未來發(fā)展前景看,產(chǎn)檢只是液體活檢的一個(gè)很小的部分,但是它作為液體活檢的試驗(yàn)田的在未來將持續(xù)發(fā)揮重要作用。


參考文獻(xiàn)


1

Nawroz H et al. Microsatellite alterations in serum DNA of head and neck cancer patients. Nat Med. 1996 Sep;2(9):1035-7.

2

Chen XQ et al. Microsatellite alterations in plasma DNA of small cell lung cancer patients. Nat Med. 1996 Sep;2(9):1033-5.

3

Leon SA et al. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977 Mar;37(3):646-50.

4

Ziegler A et al. Circulating DNA: a new diagnostic gold mine? Cancer Treat Rev. 2002 Oct;28(5):255-71.

5

Lui YY et al. Circulating DNA in plasma and serum: biology, preanalytical issues and diagnostic applications. Clin Chem Lab Med. 2002 Oct;40(10):962-8.

6

Lo YM et al. Noninvasive prenatal diagnosis: from dream to reality. Clin Chem. 2015 Jan;61(1):32-7.

7

Avent ND et al. Cell-free fetal DNA in the maternal serum and plasma: current and evolving applications. Curr Opin Obstet Gynecol. 2009 Apr;21(2):175-9. 

8

Puszyk WM et al. Noninvasive prenatal diagnosis of aneuploidy using cell-free nucleic acids in maternal blood: promises and unanswered questions. Prenat Diagn. 2008 Jan;28(1):1-6.

9

Lo YM et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997 Aug 16;350(9076):485-7.

10

Lo YM et al. Noninvasive prenatal detection of fetal chromosomal aneuploidies by maternal plasma nucleic acid analysis: a review of the current state of the art. BJOG. 2009 Jan;116(2):152-7. 

11

Dondorp W et al. Non-invasive prenatal testing for aneuploidy and beyond: challenges of responsible innovation in prenatal screening. Eur J Hum Genet. 2015 Nov;23(11):1592.

12

de Jong A et al. Non-invasive prenatal diagnosis for aneuploidy: toward an integral ethical assessment. Hum Reprod. 2011 Nov;26(11):2915-7.

13

Chiu RW et al. Noninvasive prenatal diagnosis empowered by high-throughput sequencing. Prenat Diagn. 2012 Apr;32(4):401-6.

14

Metcalfe A et al. Beyond Trisomy 21: Additional Chromosomal Anomalies Detected through Routine Aneuploidy Screening. J Clin Med. 2014 Apr 8;3(2):388-415. 

15

Sifakis S et al. Noninvasive prenatal diagnosis of Down syndrome: current knowledge and novel insights. J Perinat Med. 2012 Feb 13;40(4):319-27.

16

Patterson D et al. Down syndrome and genetics - a case of linked histories. Nat Rev Genet. 2005 Feb;6(2):137-47.

17

Goodliffe JW et al. Absence of Prenatal Forebrain Defects in the Dp(16)1Yey/+ Mouse Model of Down Syndrome. J Neurosci. 2016 Mar 9;36(10):2926-44. 

18

Vassy C et al. From a genetic innovation to mass health programmes: the diffusion of Down's Syndrome prenatal screening and diagnostic techniques in France. Soc Sci Med. 2006 Oct;63(8):2041-51. 

19

Chiang HH et al. Informed choice of pregnant women in prenatal screening tests for Down's syndrome. J Med Ethics. 2006 May;32(5):273-7.

20

Favre R et al. What about informed consent in first-trimester ultrasound screening for Down syndrome? Fetal Diagn Ther. 2008;23(3):173-84. 

21

Bianchi DW et al. Genome-wide fetal aneuploidy detection by maternal plasma DNA sequencing. Obstet Gynecol. 2012 May;119(5):890-901. 

22

Chiu RW et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20458-63.

23

Bianchi DW et al. DNA sequencing versus standard prenatal aneuploidy screening. N Engl J Med. 2014 Feb 27;370(9):799-808. 

24

Chiu RW et al. Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing: large scale validity study. BMJ. 2011 Jan 11;342:c7401. 

25

Stumm M et al. Diagnostic accuracy of random massively parallel sequencing for non-invasive prenatal detection of common autosomal aneuploidies: a collaborative study in Europe. Prenat Diagn. 2014 Feb;34(2):185-91.

26

Tong YK et al. Noninvasive prenatal detection of fetal trisomy 18 by epigenetic allelic ratio analysis in maternal plasma: Theoretical and empirical considerations. Clin Chem. 2006 Dec;52(12):2194-202.

27

Walsh JM et al. Fetal aneuploidy detection by maternal plasma DNA sequencing: a technology assessment. Prenat Diagn. 2013 Jun;33(6):514-20.

28

Cheng SH et al. Noninvasive prenatal testing by nanopore sequencing of maternal plasma DNA: feasibility assessment. Clin Chem. 2015 Oct;61(10):1305-6. 

29

Dondorp W et al. Non-invasive prenatal testing for aneuploidy and beyond: challenges of responsible innovation in prenatal screening. Summary and recommendations. Eur J Hum Genet. 2015 Apr 1.

30

Liang D et al. Non-invasive prenatal testing of fetal whole chromosome aneuploidy by massively parallel sequencing. Prenat Diagn. 2013 May;33(5):409-15. 

31

Chitty LS et al. Noninvasive Prenatal Screening for Genetic Diseases Using Massively Parallel Sequencing of Maternal Plasma DNA. Cold Spring Harb Perspect Med. 2015 Jul 17;5(9):a023085. 

32

Wong FC et al. Prenatal Diagnosis Innovation: Genome Sequencing of Maternal Plasma. Annu Rev Med. 2016;67:419-32. 

33

Song Y et al. Noninvasive prenatal testing of fetal aneuploidies by massively parallel sequencing in a prospective Chinese population. Prenat Diagn. 2013 Jul;33(7):700-6. 

34

Chitayat D et al. Prenatal screening for fetal aneuploidy in singleton pregnancies. J Obstet Gynaecol Can. 2011 Jul;33(7):736-50.

35

ACOG Committee on Practice Bulletins. et al. ACOG Practice Bulletin No. 77: screening for fetal chromosomal abnormalities. Obstet Gynecol. 2007 Jan;109(1):217-27.

36

Tsui NB et al. Non-invasive prenatal detection of fetal trisomy 18 by RNA-SNP allelic ratio analysis using maternal plasma SERPINB2 mRNA: a feasibility study. Prenat Diagn. 2009 Nov;29(11):1031-7.

37

New MI et al. Noninvasive prenatal diagnosis of congenital adrenal hyperplasia using cell-free fetal DNA in maternal plasma. J Clin Endocrinol Metab. 2014 Jun;99(6):E1022-30. 

38

Sun K et al. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments. Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):E5503-12

39

Wong AI et al. Noninvasive fetal genomic, methylomic, and transcriptomic analyses using maternal plasma and clinical implications. Trends Mol Med. 2015 Feb;21(2):98-108.

40

Benn PA et al. Maternal serum screening for birth defects: results of a Connecticut regional program. Conn Med. 1996 Jun;60(6):323-7.

41

Burton BK et al. A prospective trial of prenatal screening for Down syndrome by means of maternal serum alpha-fetoprotein, human chorionic gonadotropin, and unconjugated estriol. Am J Obstet Gynecol. 1993 Sep;169(3):526-30.

42

Orlandi F et al. First-trimester screening for fetal aneuploidy: biochemistry and nuchal translucency. Ultrasound Obstet Gynecol. 1997 Dec;10(6):381-6.

43

Spencer K et al. The influence of ethnic origin on first trimester biochemical markers of chromosomal abnormalities. Prenat Diagn. 2000 Jun;20(6):491-4.

44

Stenhouse EJ et al. First-trimester combined ultrasound and biochemical screening for Down syndrome in routine clinical practice. Prenat Diagn. 2004 Oct;24(10):774-80.

45

Spencer K et al. One stop clinic for assessment of risk for fetal anomalies: a report of the first year of prospective screening for chromosomal anomalies in the first trimester. BJOG. 2000 Oct;107(10):1271-5.

46

Scott F et al. Prospective evaluation of a first trimester screening program for Down syndrome and other chromosomal abnormalities using maternal age, nuchal translucency and biochemistry in an Australian population. Aust N Z J Obstet Gynaecol. 2004 Jun;44(3):205-9.

47

Alamillo CM et al. Nearly a third of abnormalities found after first-trimester screening are different than expected: 10-year experience from a single center. Prenat Diagn. 2013 Mar;33(3):251-6.

48

H?rmansd?rfer C et al. Age-independent first trimester screening for Down syndrome: analysis of three modified software programs with 6,508 pregnancies. Arch Gynecol Obstet. 2011 Apr;283(4):749-54. 

49

Kagan KO et al. Screening for trisomy 18 by maternal age, fetal nuchal translucency, free beta-human chorionic gonadotropin and pregnancy-associated plasma protein-A. Ultrasound Obstet Gynecol. 2008 Sep;32(4):488-92.

50

Karadzov-Orlic N et al. Improved diagnostic accuracy by using secondary ultrasound markers in the first-trimester screening for trisomies 21, 18 and 13 and Turner syndrome. Prenat Diagn. 2012 Jul;32(7):638-43.

51

Marttala J et al. Screening and outcome of chromosomal abnormalities other than trisomy 21 in Northern Finland. Acta Obstet Gynecol Scand. 2011 Aug;90(8):885-9. 

52

Merz E et al. A new approach to calculating the risk of chromosomal abnormalities with first-trimester screening data. Ultraschall Med. 2008 Dec;29(6):639-45. 

53

Ranta JK et al. First trimester biochemistry at different maternal ages. Clin Chem Lab Med. 2011 Nov 24;50(3):549-55. 

54

Kazerouni NN et al. Triple-marker prenatal screening program for chromosomal defects. Obstet Gynecol. 2009 Jul;114(1):50-8. 


版權(quán)聲明:

本網(wǎng)站所有注明“來源:“陽普醫(yī)療”的文字、圖片和音視頻資料,版權(quán)均屬于陽普醫(yī)療所有,非經(jīng)授權(quán),任何媒體、網(wǎng)站或個(gè)人不得轉(zhuǎn)載,授權(quán)轉(zhuǎn)載時(shí)須注明

“來源:陽普醫(yī)療”。本網(wǎng)所有轉(zhuǎn)載文章系出于傳遞更多信息之目的,且明確注明來源和作者,不希望被轉(zhuǎn)載的媒體或個(gè)人可與我們聯(lián)系,我們將立即進(jìn)行刪除處理。

網(wǎng)友評(píng)論: